

AN ELASTOMER THAT PERFORMS IN EXTREME CONDITIONS

STEAM RESISTANCE

HEAT RESISTANCE

Rubberatkins THERMANITE® brand of elastomers are an industry leading proprietary grade of materials developed in-house to provide unparalleled resistance to steam and hydrocarbons. These materials offer sealing solutions for enhanced heavy oil recovery with steam injection at extreme temperatures up to 600 °F.

SERVICE TEMPERATURE: 0 °C to 315 °C (32 °F to 600 °F)

FEATURES:

- Increased downhole life expectancy
- Exceptional physical property retention at extreme temperatures
- Proven field history
- Fully compatible in steam and most hydrocarbon environments
- Excellent abrasion resistance
- Rapid gas decompression (RGD) resistant

BENEFITS:

- Outstanding steam resistance
- Increased life expectancy minimises installation and intervention costs whilst reducing NPT
- Unrivalled sealing integrity
- Cost-effective solution
- Excellent chemical resistance
- High sour gas resistance

TYPICAL APPLICATIONS:

- Steam injection and stimulation applications
- Geothermal
- Enhanced Oil Recovery (EOR)
- Packer / Bridge Plug Elements
- O-rings and seal stacks
- BOP and wellhead seals
- Surface pressure control equipment seals
- High pressure cup seals

THERMANITE® approved under: ISO 23936-2 NORSOK M710 NACE TM0187

ABERDEEN	HOUSTON	CALGARY
t +44 01224 246 777	t +1 281 719 5116	t +1 713 412 8404
ABU DHABI	CHINA	EMAIL
t +971 50 364 3518	t +86 135 1076 6825	sales@rubberatkins.com

©2019 Rubberatkins Limited. ALL RIGHTS RESERVED.

This document is protected by copyright and its contents are strictly confidential. The copyright belongs to Rubberatkins Limited and thus the information in the document may not be used for any purpose without the prior written consent of Rubberatkins Limited. Rev. 2

AN ELASTOMER THAT PERFORMS IN EXTREME CONDITIONS

THERMANITE [®] - MATERIAL DATA					
Elastomer	Thermanite [®] 1195TH		Thermanite [®] 1185TH		
	(85 – 90 IRHD)		(90 – 95 IRHD)		
Property	Conditions	Typical value	Conditions	Typical value	Test standard
Tensile strength (MPa)	ambient	>16.0	ambient	>17.0	ISO 37
Elongation at break (%)	ambient	>180	ambient	>100	ISO 37
100% modulus (MPa)	ambient	>11.0	ambient	>16.5	ISO 37
Compression set (%)	22 hrs @ 200 °C	<55	22 hrs @ 200 °C	<40	ISO 815
Hardness (IRHD)	ambient	85 - 90	ambient	90 -95	ISO 48
Tear strength (N/mm)	ambient	>30	ambient	>30	ISO 48
Effects of fluids	bespoke	-	bespoke	-	ISO 1817
Glass transition (°C)	-	-2	-	0	ISO 22768

©2019 Rubberatkins Limited. ALL RIGHTS RESERVED.

This document is protected by copyright and its contents are strictly confidential. The copyright belongs to Rubberatkins Limited and thus the information in the document may not be used for any purpose without the prior written consent of Rubberatkins Limited.

www.rubberatkins.com | sales@rubberatkins.com

AN ELASTOMER THAT PERFORMS IN EXTREME CONDITIONS

THERMANITE ${\mathbb R}$ - COMPARISON CHART					
Elastomer type	Fluoroelastomer	Ethylene Propylene	Aflas [®]	Perfluoro	Rubberatkins
	FKM	EPDM	TFE/P	FFKM	Thermanite®
		Thermal Capal	pilities		
Max. continuous, °C	200	100	200	250	250
Max. intermittent, °C	240	150	250	315	315
Low temp resistance,°C	-15	-50	0	-10	-5
Special grades, °C	-40	-	-	-40	-
		Chemical Resis	tances		
Oil resistance	Excellent	Poor	Good	Excellent	Very good
Alcohols	Grade dependent	Good	Good	Excellent	Good
Ketones	Poor	Good	Poor	Excellent	Fair
Aromatics	Good	Poor	Poor	Excellent	Fair
Acids	Very good	Very good	Very good	Excellent	Very good
Bases	Grade dependent	Excellent	Excellent	Very good	Excellent
Steam	Poor	Excellent	Excellent	Excellent	Excellent
Sour gas	Grade dependent	Excellent	Excellent	Very good	Excellent
Physical Properties					
Tear & abrasion resistance	Poor	Good	Good	Poor	Very good
Extrusion resistance	Poor	Fair	Fair	Poor	Good
Compression set	Very good	Very good	Poor	Excellent	Fair

Disclaimer:

The Compatibility Chart above is for guidance only and is very much dependent upon the elastomer formulation which will vary from vendor to vendor. Rubberatkins cannot take responsibility for a selection based on this information and is presented purely to give general guidance. Please consult Sales@Rubberatkins.com who will be able to help you make the correct material selection.

©2019 Rubberatkins Limited. ALL RIGHTS RESERVED.

This document is protected by copyright and its contents are strictly confidential. The copyright belongs to Rubberatkins Limited and thus the information in the document may not be used for any purpose without the prior written consent of Rubberatkins Limited.

www.rubberatkins.com sales@rubberatkins.com

THERMANITE ${ m I\!R}$ - steam exposure, 600 °F, 2 months					
Dronorty	Thermanite [®] 1195TH	Aflas [®] 907/20			
Property	(85 - 90 IRHD)	(90 - 95 IRHD)			
Initial Results					
Tensile strength (MPa)	13.8	16.7			
Elongation at break (%)	197	193			
100% modulus (MPa)	11.5	11.9			
Hardness (IRHD)	89	90			
Post-Exposure Results					
Change in tensile (%)	-6	-38			
Change in elongation (%)	-6	-9			
Change in 100% modulus (%)	-14	-23			
Change in hardness (IRHD)	-5	-5			

THERMANITE® materials were tested for rapid gas decompression (RGD) resistance to ISO 23936-2 Annex B using standard gas mixture B.1.ii. Temperature, pressure and duration were standard as per the specification. Samples showed no visible signs of RGD on the surface.

THERMANITE ${ m I\!R}$ - ISO 23936-2 RAPID GAS DECOMPRESSION					
Material	Thermanite [®] 1195TH	Thermanite [®] 1185TH			
	(85 - 90 IRHD)	(90 - 95 IRHD)			
Post-test seal ratings, 312 size o-rings					
Test replicate 1	2100	0000			
Test replicate 2	0000	0000			
Test replicate 3	0000	0000			
Test replicate 4	1100	0000			

©2019 Rubberatkins Limited. ALL RIGHTS RESERVED.

This document is protected by copyright and its contents are strictly confidential. The copyright belongs to Rubberatkins Limited and thus the information in the document may not be used for any purpose without the prior written consent of Rubberatkins Limited.

www.rubberatkins.com | sales@rubberatkins.com

©2019 Rubberatkins Limited. ALL RIGHTS RESERVED.

This document is protected by copyright and its contents are strictly confidential. The copyright belongs to Rubberatkins Limited and thus the information in the document may not be used for any purpose without the prior written consent of Rubberatkins Limited.

www.rubberatkins.com sales@rubberatkins.com

THERMANITE[®] - CASE STUDY

ELASTOMER EXCELLENCE AT WORK

CHALLENGE

A leading service company operating within the challenging environment of steam injection wells in Colombia asked Rubberatkins to develop a cup able to successfully perform in temperatures of 550 °F whilst withstanding differential pressures above 1200psi. Additionally, the cup was required to handle hydrocarbon exposure, offer long working life expectancy, and be compatible with existing strings. The difficulties of processing high grade polymers, as well as handling severe thermal expansion and contractions were acknowledged as the main challenges.

SOLUTION

Rubberatkins formulated a material able to achieve high physical properties for long durations whilst at extreme elevated temperatures. Axisymmetric Finite Element Analysis (FEA) was conducted to evaluate stress levels imposed on the elastomer both whilst travelling in casing and when pressurised. Due to the elevated service temperature, the seal and components of the tool are subject to significant thermal expansion. The Rubberatkins R&D team designed a cup optimised for the tribological effects encountered as a result of thermal expansion. The cup would also feature a back-up system which would offer full radial support to the elastomer whilst subjected to differential pressure. The cup was then rigorously tested in-house at 600 °F for a period of one month with pressure constantly applied showing leak free sealing. It showed excellent performance whilst subjected to pressure and temperature fluctuations and was observed to be in excellent condition on retrieval.

VALUE TO CLIENT

Steam Injection has posed significant challenges to elastomeric seals over the years with seals failing early in the steam injection cycle resulting in less than optimal oil recovery. **THERMANITE**® 7" 23 # Steam Cups have been successfully deployed in steam injection wells at 288 °C/550 °F in Columbia for 15 months. Rubberatkins **THERMANITE**® Steam Cups showed integrity throughout all injection stages and handled sudden temperature fluctuations due to intervention and fluid changes.

Figure 1: A typical THERMANITE $\ensuremath{\mathbb{B}}$ Dual Steam Cup Packer Assembly.

Orientation and connections to suit your requirements.

CLIENT: Major Service Company **REGION:** Colombia

ABERDEEN t +44 01224 246 777	I	HOUSTON t +1 281 719 5116		CALGARY t +1 713 412 8404
ABU DHABI t +971 50 364 3518	Ι	CHINA t +86 135 1076 6825		EMAIL sales@rubberatkins.com

©2019 Rubberatkins Limited. ALL RIGHTS RESERVED.

This document is protected by copyright and its contents are strictly confidential. The copyright belongs to Rubberatkins Limited and thus the information in the document may not be used for any purpose without the prior written consent of Rubberatkins Limited. Rev. 2